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Let T be an infinite set. Denote the Cantor cube by

DT = {p : p : T →{0,1}}.

For s ⊂ T , i : s→{0,1} it will be used the following notation

H i
s = {p ∈ DT : p|s = i}.

Efimov defined strong sequences in the subbase
{H i
{α} : α ∈ T and i : {α}→ {0,1}} of the Cantor cube

Definition

A pair (H i
s,H

j
v ) where |s|< ω is called a connected pair if

H i
s ∩H i

v 6= /0

Definition

A sequence (H iα
sα
,H jα

vα
) consisting of connected pairs is called a

strong sequence if H iα
sα
∩H

iβ
vβ

= /0 whenever α < β .
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Theorem (Efimov, 1965)
Let κ be a regular, uncountable cardinal number. In the space
DT a strong sequence

(H iα
sα
,H jα

vα
),α < κ

such that |sα |< ω and |vα |< κ for each α < κ does not exists.



Let X be a set, and let B ⊂ P(X ) be a family of non-empty
subsets of X closed under finite intersections.
We say that a family C ⊂B is centered iff

⋂
F 6= /0 for each

finite subfamily F ⊂ C .
Let S be a finite subfamily contained in B and H ⊆B. A pair
(S,H), will be called connected if S∪H is centered.

Definition
A sequence (Sφ ,Hφ ); φ < α consisting of connected pairs is
called a strong sequence if for all λ , in the range φ < λ < α, a
family Sλ ∪Hφ is not centered.
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Theorem (Turzański, 1992)

If for B ⊂ P(X ) there exists a strong sequence
(Sφ ,Hφ );φ < (κλ )+ such that |Hφ | ≤ κ for each φ < (κλ )+, then
the family B contains a subfamily of cardinality λ+ consisting of
pairwise disjoint sets.



Let (X , r) be a set with relation r. (We sometimes write X
instead of (X , r) in the situation when it is obvious which
relation r is being used).
Let a,b,c ∈ X .
We say that a and b are compatible iff there exists c such that

(a,c) ∈ r and (b,c) ∈ r .

(We say that a,b have a bound).
A set A⊂ X is called a κ- directed set iff every subset of X of
cardinality less than κ has a bound.



Definition
Let (X , r) be a set with a relation r.
A sequence (Hφ )φ<α , where Hφ ⊂ X , is called a κ-strong
sequence if:
1o Hφ is κ-directed for all φ < α

2o Hψ ∪Hφ is not κ-directed for all φ < ψ < α.

Theorem (JJ)
Let κ,µ,τ be regular cardinal numbers with κ,µ < τ. If for a set
(X , r) of cardinality at least τ there is a κ-strong sequence
{Hα ⊂ X : α < τ} with |Hα |< τ, then there exists a strong
sequence {Tα : α < µ} such that Tα ⊂ Hα and |Tα |< κ, α < µ.
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Theorem (JJ)

Let κ,µ,τ be three cardinals such that κ,µ < τ. Let (X , r),
|X | ≥ τ be a set with relation r . Then either X contains a set of
cardinality µ which consists of pairwise incompatible elements
or X contains a κ-directed subset of cardinality τ.



We need to assume that A ⊂ P(X ) is closed under taking κ -
intersections i.e. for all A ′ ⊂A such that A ′ < κ we have⋂

A ′ ∈A . We introduce below a generalization of a centered
family. In the literature, one can find a definition of a σ -centered
family which says that it is a countable union of centered
families. However, we need a different definition of generalized
centered family. In order to avoid a confusion, we introduce the
following definition.

Definition
Let κ,τ be cardinals with κ < τ. A family of sets A ⊂ P(X ), with
|A | ≥ τ, is called a κ-vaulted family iff for each subfamily
B ⊂A of cardinality less than κ we have

⋂
B 6= /0.
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Theorem (JJ)

Let κ,µ,τ be cardinals with κ,µ < τ. Let A ⊂ P(X ) be a family
of sets with |A | ≥ τ closed under taking κ - intersections. Then
A contains a subfamily of cardinality µ that consists of pairwise
disjoint sets or A contains a κ-vaulted family of cardinality τ.

Proof.
Let A = {Aγ : γ < τ} be a family as it is required in theorem.
Define a partial ordered set P = {γ < τ : Aγ ∈A } with the
following relation.

(γ,β ) ∈ r ⇔ Aγ ⊂ Aβ .

If γ,β are incompatible, then Aγ ∩Aβ = /0. According to previous
theorem the proof is complete.
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Definition

A family {(A0
ξ
,A1

ξ
) : ξ < α} of ordered pairs of subsets of X

such that A0
ξ
∩A1

ξ
= /0 for ξ < α is called an independent family

(σ−independent family) (of length α) if for each finite
(countable) set F ⊂ α and each function i : F →{0,1} we have
that ⋂

{Ai(ξ )
ξ

: ξ ∈ F} 6= /0.



Definition

Let I = {{Iβ

α : β < λα} : α < τ} be a family of partitions of
infinite set S with each λα ≥ 2 and let κ,λ ,θ be cardinals. If for
any J ∈ [τ]<θ and for any f ∈ Πα∈Jλα the intersection⋂
{I f (α)

α : α ∈ J} has cardinality at least κ, then I is called
(θ ,κ)-generalized independent family on S. Moreover, if λα = λ

for all α < τ, then I is called a (θ ,κ,λ )-generalized
independent family on S.



We give below some notions of generalized independent
families:.
1. An independent family is (ω,1)−generalized independent
family.
2. A σ -independent family is (ω1,1)-generalized independent
family.



Theorem (Elser, 2011)

Let λ ,θ ,(λ ≥ θ). On every set with at least λ<θ elements there
exists a (θ ,1,λ )-generalized independent family of cardinality
2λ .



We denote by S(X ) the smallest cardinal κ such that every
family of pairwise disjoint nonempty open sets has size less
than κ.

Theorem (JJ)

Let κ,τ (κ < τ) be cardinals with κ ≥ S(X ). Let A ⊂ P(X ) be a
family of sets (|A | ≥ τ) closed under taking κ-intersections.
Then there exists a (κ,1)-generalized independent family of
cardinality τ.



Definition
Let µ,κ be two cardinals with ℵ0 ≤ κ ≤ µ and {Xi}i∈µ be a
family of topological spaces. Then �κ

i∈µ
Xi denotes the κ-box

product which is induced on the full cartesian product Πi∈µXi by
the canonical base

B = {
⋂
i∈I

pr−1
i (Ui) : I ∈ P<κ (µ) and Ui is open in Xi},

where P<κ (µ) := {I ⊂ µ : |I|< κ}.

Theorem (Hu, 2006)

Let I be a (θ ,1)-generalized independent family on a set S
and let {Xα}α<τ be a family of topological spaces such that
d(Xα )≤ λα for all α < τ. Then d(�τ

α∈θ
(Xα ))≤ |S|.



Corollary (JJ)

Let κ,θ ,τ (κ < τ) be cardinals with κ ≥ S(X ) and let S be a set.
Let A ⊂ P(X ) be a family of sets (|A | ≥ τ) closed under taking
κ-intersections and let {Xα}α<τ be a family of topological
spaces such that d(Xα )≤ λα for all α < τ. Then
d(�τ

α∈θ
(Xα ))≤ |S|.



Definition
Let κ,λ ,θ be three cardinals. Let S be an infinite set of the
cardinality κ. The cardinal i(θ ,κ,λ ) is the smallest cardinal τ

such that there are no (θ ,1,λ )- generalized independent
families on S of size τ.

We introduce the following invariant

ŝκ = sup{α : there exists a κ-strong sequence of size α}.

Theorem (JJ)

Let κ,λ ,θ be three cardinals with κ < θ . Let S be a set with
|S| ≥ θ . Then ŝ|S| ≤ i(θ , |S|,λ ).



Theorem (Hu, 2006)
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Then the following are equivalent
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θ
)(Xα )≤ |S| holds for any family of topological spaces

{Xα}α<τ with each d(Xα )≤ λ .
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J. JURECZKO, M. TURZAŃSKI, 2008 From a Ramsey-type
theorem to independence, Acta Univ. Car. Math et Phy. 49,
2 (2008), 47-55.

W. HU, 2006, Generalized independent families and
dense sets of Box-Product spaces, App. Gen. Top. 7(2),
(2006), 203-209.
S. O. ELSER, 2011, Density of κ-Box Products and the
existenxce of generalized independent families, App. Gen.
Top., 12(2) (2011), 221-225.
J.JURECZKO, κ-strong sequences and the existence of
generalized independent families, preprint.



The main bibliography
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